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2. How VPLX Works

2.1 Introduction

This chapter provides an overview of how VPLX uses replication to estimate variances for
complex samples. The primary purpose of the chapter is to introduce each of the major
replication methods offered by VPLX. Each method will be applied to a simple example
problem. Chapter 12 discusses the available variants of each replication method in greater detail.

The discussion in this chapter will generally be limited to variance estimation for sampling with
replacement. In practice, such methods are suitable even when the actual sampling method is
without replacement, as long as the sample sizeisa small fraction of the population. (Chapter 12
considers sampling without replacement, including the instance when some of the elements of
the sample are selected with certainty, that is, with probability 1.)

A secondary purpose of this chapter is to illustrate the general form of VPLX syntax and the
interpretation of the resulting output. Subsequent chapters present the syntax systematically, so
that the reader is not expected to deduce any of these rules from the examples appearing here.
The command language and output are included simply to show the connection between each
replication method and its implementation in VPLX and to provide an overall sense of the
features of the program.

The chapter is not a substitute for formal training in variance estimation for complex samples.
Ideally, each VPLX application should be implemented or reviewed by a statistician with
previous experience in this area. Nonetheless, the chapter may serve as a place to start for some
with limited backgroundsin inference from complex samples but who are aware that one or more
applications of interest to them cannot be adequately approached with the statistical theory for
simple random samples. A concluding section will discuss further references.

2.2 The Random Group Method

General Description. The random group method is perhaps the simplest replication method to
understand, although its statistical properties make it probably the least attractive of those
available in VPLX. In the random group method, the total sample is divided into parts, called
random groups, in amanner designed to represent the major sources of variation arising from the
sample design.
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Asafirst example, consider a sample design drawing 30 clusters from a universe that has been
divided into clusters of one or more associated elements each. For instance, a simple random
sample of 30 households gives a clustered sample of persons, since each sampled household
brings one or more associated persons into the sample. A possible application of the random
group method in this instance is to treat the households as 30 random groups. Estimates of
population characteristics are then formed based on each of the 30 sampled households
separately, and then sampling variance is estimated based on variation among the 30 random
group estimates. In general, when the sample is a simple random sample of clusters, one form
of the random group method is to treat each of the sampled clusters as a random group.

Continuing the example, suppose that per capitaincome is one of the characteristics of interest.
The estimate of per capitaincome from the full sampleisthe ratio of estimated aggregate income
divided by the estimated number of persons. The random group method first applies the estimator
for the full sample to the random group; in this case, the random group estimates are the
household per capita incomes, that is, the total household income divided by the number of
persons in the household. The random group variance estimate is then the familiar unbiased
estimate of the variance of the mean of the resulting 30 values of household per capitaincome.
In other words, once the random group estimates are determined for each random group, then the
variance estimate may be easily obtained from standard statistical software, such as SAS, as well
as more specific programs, such as VPLX. Note that the mean of the household per capita
incomes may be quite far from the estimate of per capitaincome for the full sample.

The random group method assumes that it is possible to apply the full sample estimator to each
individual random group. For example, if the population characteristic were mean family income,
then single person households and other households without families pose a severe problem for
the random group method when households are used as random groups.

Grouping Clusters. If the sampleis composed of asimple random sample of alarge number of
sampled clusters, however, it is often preferable to group anumber of clusterstogether in forming
each random group. For example, a sample of 300 clusters may be divided into 100 random
groups, each composed of 3 clusters. In grouping clusters together, it is important not to use
observed characteristics in forming the random groups; instead, the grouping should be random
or based simply on the order of selection. For instance, the first three sampled clusters could be
grouped into afirst random group, the next three into the second, etc. (On the other hand, it is
almost never appropriate to divide sample clusters into elements and then to assign the elements
to different random groups. Such assignment would misrepresent the clustered nature of the
sample.)

Reducing the number of random groups by grouping has the disadvantage of producing generally
less precise variance estimates for linear estimates, such as estimates of totals. Grouping has the
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advantage of reducing the amount of calculation and, more importantly, may produce more
reliable variance estimates for nonlinear statistics, such as ratios, since these nonlinear statistics
are estimated from larger random group samples. Furthermore, judicious grouping may assure
that the characteristics of interest are defined for each random group in situations in which some
characteristics may be occasionally undefined at the level of the cluster. Nonlinear statistics
based on single clusters may be highly unstable and present an unsatisfactory measure of variance
for the estimate based on the full sample.

Only in relatively extreme circumstances should concerns about computer resources dictate a
reduction in groups. For example, it will hardly ever be appropriate to reduce the number of
random groups from 30 to 10 simply for fear of taxing VPL X, although such a grouping may be
occasionally called for if complex nonlinear statistics would behave substantially better for the
reduced number of replicates.

Stratification. In some situations, it is possible to reflect the effect of stratification in forming
random groups. The simplest such situation is when the same number of clusters have been
drawn independently from each of the strata. In this case, random groups may be formed by
randomly assigning one of the sampled clusters from each stratum to a group. In other words,
each random group would comprise a sampled cluster from each of the strata. For example, if
there had been 3 strata with 10 sampled clusters each, a possible application of the random group
method would divide the overall sample into 10 random groups, each with 1 sample cluster from
each of the 3 strata.

Asageneral comment, however, the random group method does not adapt to stratification nearly
so effortlessly as the stratified jackknife, to be discussed in Section 2.4. When stratification is
present, it is generally important to reflect its effects in designing the random group samples. If
the numbers of sampled clusters per stratum do not permit a satisfactory application of the
random group method, then one should move toward more flexible alternatives, such as the
stratified jackknife.

How Many Replicates? Applications of random group estimates have typically chosen a
relatively modest number of random groups, such as 10 or 30. Generally, too small a number,
such as 2, produces highly unstable variance estimates, while large numbers, such as 500, run a
high risk of difficulties for nonlinear estimators.

Example. A simple numerical example will precede the formulas for the random group method.
A file of commands, exanl. crd , for the example contains:

comrent EXAML
comment First exanple input into VPLX
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This exanple starts with two variables, roons and persons.

There are six observations, each treated as a separate
sanpling cluster. This run illustrates the random group
et hod.

The create step organi zes the incomng data into replicate
totals for use by later steps.

create in = exanplel.dat out = exanplel.vp

i nput roons persons cluster

f or mat (3f2.0)

cooment The incomng data, in the file exanplel.dat, are

571

6 82

523

414

845

826

replication nmethod random group
replicate nunber cl uster

display in = exanplel.vp

comment The display step takes the VPLX file created in the
previous step and displ ays estimates, standard errors,
etc. as requested.

list roons persons total (roons persons)

cov total (roons persons)

Exhibit 2.1. First example input to VPLX, illustrating the random group method.

This example problem was run in DOS with the command:

c>vpl x  <examl.crd >exant.lis

where exanl. crd wasthe name of thefilein Exhibit 2.1 and exanl. | i s became the output
filefrom VPLX.

Some useful generalizations may be made about the VPLX syntax from Exhibit 2.1. VPLX
commands begin with akey word in position 1 and may be continued on an arbitrary number of
records as long as the first character of each continuation record is a blank; in other respects the
command language is free format. (Chapter 7 discusses optional indentation of key words by
placing"_" in the first position.)

The exampleincludes two steps, as described in Chapter 1, a CREATE step and aDISPLAY step.
Comments may be interspersed among the rest of the commands.

The resulting output, exanpl el. | i s , contained:
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VPLX - Version 92.12
comrent EXAML
conmment First exanple input into VPLX
This exanple starts with two variabl es, room and persons
There are six observations, each treated as a separate

sanpling cluster. This run illustrates the random group
nmet hod.

The create step organi zes the incomng data into replicate
totals for use by later steps.

create in = exanplel.dat out = exanplel. vpl #1
i nput roons persons cluster
3 variables are specified #2

f or mat (3f2.0)

coomment The incomng data, in the file exanplel.dat, are

571
6 82
523
41 4
845
826
replication nmethod random group #3
replicate nunber cluster
Si ze of bl ock 1 = 3 #4
Total size of tally matrix = 3
Unnamed scratch file opened on unit 13
Unnamed scratch file opened on unit 14
End of primary input file after obs # 6
display in = exanplel.vpl #5

comment The display step takes the VPLX file created in the
previous step and displ ays estimates, standard errors,
etc. as requested.

list roons persons total (roons persons) #6

cov total (roons persons)
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Estimate Standard error #7
r oomns : MEAN 6. 0000 . 6831
per sons . MEAN 4. 0000 1.1832
r oons :  TOTAL 36. 0000 4.0988
per sons . TOTAL 24. 0000 7.0993
Covariances of the Sanple Estinates #8
Estimate 1 2
r oons : TOTAL
1 36. 0000 . 16800000D+02
per sons . TOTAL
2 24,0000 .12000000D+01  .50400000D+02
Use of doubl e precision matrix: 35 out of 16000 #9

Stop - Programtermninated.

Exhibit 2.2. Annotated output from the first random group example.

The output from VPLX was modified for inclusion in Exhibit 2.2 by removing page breaks
inserted by VPLX and adding numbered comments, #1, #2, etc. to the right margin.

The output begins with aline showing aversion number, which indicates the year and month of
the last major changes to the program. VPLX echoes back all of the input commands.
(Consequently, subsequent examples in this chapter will show only the output without the
associated input.) VPLX adds comments, such as those at #2 and #4, and also displays results,
such as those beginning at #7 and #8. (For purposes of this documentation, the material reported
by VPLX at #2 and #4 is shown in italics to identify it as separate from the input commands.
Obvious output from the program, beginning at #8 and #9, is not so identified, however.)

Thefirst set of commentsin Exhibit 2.2 note that the example is based on a hypothetical situation
in which a simple random sample of 6 occupied housing units has been sampled from some
domain of interest, such asacity. (Asnoted at the beginning, the chapter considers only variance
estimators for sampling with replacement, although VPL X is aso able to reflect finite population
corrections in some applications; see Chapter 12.) For simplicity, unweighted estimates are
considered, although VPL X can readily incorporate weights. Two variables are obtained for the
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sample cases: the number of rooms in the housing unit and the number of persons in the
household.

Thefirst statement of the CREATE step appears at #1. The statement specifies two files: a data
file, exanpl el. dat , described in the following comment; and an output file, exanpl el. vpl
that VPLX will create in this step. The output file contains variable identifiers, characteristics,
and estimated totals ("tallies') necessary to carry out replicate calculations. The CREATE
statement is followed by two required statements: an INPUT statement naming three variables
to beread, and a FORMAT statement giving the locations of the variables on the incoming file.
The FORTRAN format (3f2.0) states that each of three variables occupy two positions each,
beginning at the start of the record, and that there are no implied places after the decimal. VPLX
reports the count of variables at #2 to assist in checking the consistency of the variable list and
format. Using the format, VPLX reads the first incoming record as 5., 7., and 1., and reads
subsequent records in a similar manner. INPUT and FORMAT statements must appear in any
CREATE step.

The statement at #3 serves to identify the replication method as random group, and the following
statement identifies one of the incoming variables, cl ust er , as the random group identifier.
In this simple example, each separate observation istreated as arandom group, although the more
usual situation is that arandom group is composed of several sample observations.

VPLX produces the report at #4, comprising five indented lines, in the course of carrying out the
CREATE step. Thefirst two lines report on the number of cells used to hold the sums for each
replicate. In this case, three cells are required for each replicate to hold the two variables, r oons

and per sons, and athird for the number of cases. (In aweighted analysis, the last of these
would be the weighted number of cases.) Sincethevariablecl ust er isused to identify random
groups, no sum is made for it. There is only one block created, so that the total size for each
replicate is 3. The next two lines report that two scratch files have been opened. The last reports
that 6 observations have been successfully read from the primary input file.

The DISPLAY step beginsat #5. The step readsthe VPLX file, exanpl el. vpl , created in the
previous step. The LIST statement at #6 requests estimates and standard errors for the means of
roons and per sons , aswell astheir respective estimated totals. (Because the sample size was
fixed at 6, the unweighted totals are less meaningful than when weighted estimates are
considered, since the weighted values estimate population totals. Nonetheless, it is useful to
consider the unweighted totals here for purposes of illustration.) The COV statement
immediately afterwards requests the covariance matrix for total rooms and persons.

The output at #7, normally beginning on the top of a page, presents the estimates requested by
the LIST statement. For example, the estimated mean number of roomsis 6, with an estimated
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standard error of .6831. Note that this value represents a measure of the uncertainty of the
estimate 6.0000 as an estimate of the population mean number of rooms, rather than an estimate
of the population standard deviation of the number of rooms. Except for rounding, the standard
error of the total number of roomsis 6 (that is, the number of cases or weighted cases) times the
standard error for the mean. In general, however, there is not a simple relationship between the
standard errors of the mean and total when there is variation in the number of sample cases per
random group.

The output at #8 displays the estimated covariance matrix for the two estimated totals. One
column again shows the estimates. The covariance of total rooms with itself, that is, its variance,
is .168D+2 = 16.8, the sgquare of the standard error, 4.0998, shown previously for the LIST
request. Similarly, the other diagonal element, .504D+02 = 50.4, can also be computed from the
output corresponding to the LIST statement. The covariance between total rooms and persons,
.12D+01 = 1.2, cannot be derived from the values obtained from the previous LIST statement,
however.

When VPL X concludes processing, it gives a summary, at #9, of its use of a double precision
storage matrix. Most data storage for a problem is obtained from this array, and VPLX will
terminate and provide an error message if insufficient storageisavailable. The size of this matrix
can vary with the computer environment: the 93.05 PC version, compiled with the Microsoft
Fortran 5.0 compiler, has 16,000 cells available, but in a VAX environment, for example, the
array can be usefully set to 1,000,000 or more. (The Microsoft FORTRAN Workbench compiler
permits use of extended memory on the PC, and version 93.05 has been compiled and run with
160,000 cells.) In this example and all the others in this chapter, demands on storage are
extremely small compared to the storage available on the PC version. For the sake of brevity, this
concluding summary will be omitted from the subsequent examples shown in this chapter, as will
the version number displayed by VPLX at the beginning of the output.

This first example illustrates that with some simple commands it is readily possible to obtain
sampling errors and covariances for means and totals through a combination of CREATE and
DISPLAY steps. Through simple elaboration of the INPUT and FORMAT statements and the
requestsin the DISPLAY step, it is possible to obtain results for a much larger set of variables
inasingle run.

The TRANSFORM Step. To enrich the example to show other capabilities of VPLX, however,
suppose that the ratio of rooms to persons, computed on an aggregate basis, were also of interest.
Ratios of sample values routinely appear in survey analysis. The TRANSFORM step can read
aVPLX file and compute ratios and other such statistics defined in terms of estimated sample
totalsfor both the overall sample and each replicate sample, and writes the resultsto anew VPLX
file. The DISPLAY step isthen able to provide estimates and variances for such estimates. A
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set of commands, exan®. crd , to VPLX to accomplish thisgoal for the same data set produced
the following output:

coment EXAMR

conmment Thi s next exanpl e agai n uses the random group nethod but al so
uses it to conpute the variance of the ratio of the nunber
of roons to the nunmber of persons. The initial create
step is the same as EXAML, and uses the sane input.

create in = exanplel.dat out = exanplel.vp

i nput roons persons cluster

3 variables are specified

replication method random group

replicate nunber cluster

f or mat (3f2.0)
Si ze of bl ock 1 = 3
Total size of tally matrix = 3

Unnamed scratch file opened on unit 13
Unnamed scratch file opened on unit 14
End of primary input file after obs # 6
transform in = exanpl el. vpl out=exanpl la. vpl #1
conmment The transformstep is able to take a VPLX file and to create
or nodify statistics that are functions of sanple totals
such as the ratio of total roons to total persons. The next
statenent, divide, is followed by statenents instructing VPLX
to divide roons by persons and to place the result in proom
di vi de #2
old roons persons
derived proom
(assigned to bl ock 2) #3
conment The next call is to a subroutine, rprint, that prints the
results. Note that it is called once for the full sanple and

once for each replicate

rprint
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ol d roons persons proom
conmment Optionally, |abels can be provided and added to the VPLX file.

| abel s rooms ' Nunber of roons' persons ' Persons'
proom ' Roons per person'

RPRI NT: REPLI CATE 0

r oons : TOTAL 36. 000

per sons . TOTAL 24. 000

proom © VALUE 1. 5000
RPRI NT: REPLI CATE 1

r oons : TOTAL 30. 000

per sons . TOTAL 42. 000

proom © VALUE . 7143
RPRI NT: REPLI CATE 2

r oons : TOTAL 36. 000

per sons . TOTAL 48. 000

proom © VALUE . 7500
RPRI NT: REPLI CATE 3

r oons : TOTAL 30. 000

per sons . TOTAL 12. 000

proom © VALUE 2. 5000
RPRI NT: REPLI CATE 4

r oons : TOTAL 24. 000

per sons . TOTAL 6. 0000

proom © VALUE 4. 0000
RPRI NT: REPLI CATE 5

r oons : TOTAL 48. 000

per sons . TOTAL 24. 000

proom © VALUE 2.0000
RPRI NT: REPLI CATE 6

r oons : TOTAL 48. 000

per sons . TOTAL 12. 000

proom © VALUE 4. 0000

di splay in = exanpl la. vpl

cooment This will now display the random group estinate of the variance
of proom Note that linearization gives:
var (proon) = (1/24*24) * var(total (roonj)
+ (36*36/ 24*24*24*24) * var(total (persons))
- 2 * (36/24*24*24) * cov (total (roon),total (persons))
= .2198 = .4688 * .4688

list roons persons proom
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Estimate Standard error
Nunber of rooms : MEAN 6. 0000 . 6831
Per sons : MEAN 4. 0000 1.1832
Roons per person : VALUE 1. 5000 . 7055

Exhibit 2.3. Annotated output from the second random group example.

The VPLX run in this second example begins with a CREATE step with the same commands as
the previous example, recreating the VPLX file exanpl el. vpl . The second example could
have begun instead at #1 aslong asexanpl el. vpl wasstill available. The TRANSFORM step
at #1 reads the VPLX file exanpl el.vpl as input and creates another VPLX file,
exampl 1la. vpl , as an output. Generally, the TRANSFORM step operates on an incoming
VPLX file to produce a new one.

The TRANSFORM step creates new variables by using subroutines; in turn, the subroutines are
of two types: standard and user-supplied. There are several standard subroutines available in the
TRANSFORM step. EXAM2.CRD evokes two of these, DIVIDE, at #2, and RPRINT, afew
lines below. Chapters 8 and 14 describe many of the available standard subroutines. The
intention is that the standard routines should provide a means to accomplish many of the tasks
that one might require, but the ability to include user-supplied routines affords a means of
estimating variances for unusual problems.

The two lines following the DIVIDE statement at #2 determine what variables will be passed to
and received from the DIVIDE subroutine. Thefirst statement identifiesr oons and per sons
as the two existing variables to be passed to DIVIDE. DIVIDE usesthe last old variable in the
list as the denominator; hence, the order of variables in the statement is important. The next
statement identifies a new variable to be created by DIVIDE and declares its type as "derived.”
This variable type is used for statistics, such asratios, that are not simply the weighted sum of
individual observed values.

VPLX wrotethe line at #3 in Exhibit 2.3 to state the block assignment for the new variable. The
issue of blocking isdiscussed in Chapter 5. Let it suffice to note that VPL X handles the blocking
of variables in the examplesin this chapter without requiring from the user any specific direction
in the command language.

A comment then notes that labels can be assigned to the variables and this operation then follows.
Thisfeature is also available within the CREATE step.
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Thelines beginning at #4 in Exhibit 2.3 were written by RPRINT, and the information in these
lines allows usto look directly at the manner in which random group replication is implemented
inVPLX. Thefirst set of lines shows valuesfor r oons , per sons , and their ratio pr oom as 36,
24, and 1.5, respectively, which are the values for the entire sample. In other words, VPLX first
calls the subroutine with the values for the overall sample. The next group of lines reports values
for rooms and persons of 30 and 42, equal to 6 times the values for the first random group, 5 and
7 respectively. (The values on the incoming file are reported after #1 in Exhibit 2.2.) Similarly,
sample totals, computed as 6 times the random group values, are displayed in succession for the
remaining random groups.

At #5, the DISPLAY step begins, using the new file, exanpl 1a. vpl , asinput. Standard errors
are obtained for the means of r oons and per sons , aswell as for the value of their ratio. If X,
denotes an estimate computed for the whole sample, and X, represent the same statistic based on
random group r, r=1,..,6, then the random group variance estimator implemented by VPLX in this
caseis:

1

Va, () = = 3 (% X 1)

where n is the number of random groups. Note that, with the combination of circumstances in
this example, this variance estimator givesidentical results for the means and totals of rooms and
persons as the classical text-book variance estimator for sampling with replacement.

Since the ratio pr oomis anonlinear statistic, however, different variance estimation strategies
yield differing results. For purposes of comparison, the comment after #5 gives the variance
estimate for pr oom based on linearization, asimplemented in several other programs, equivalent
to an estimated standard error of 0.4688. With the random group estimator, VPL X obtains the
estimated variance of pr oomas 1/30 { (0.7143-1.5)? + (0.75-1.5)* + (2.5-1.5)? +(4.0-1.5)? + (2.0-
1.5)? + (4.0-1.5)%} = 0.7055% Both linearization and random group methods can be applied to
other smooth, although potentially complex, functions of the estimated sample totals.

The values of proom computed for the random groups vary widely, from .7143 to 4.0. In
general, the random group approach recomputes estimates of interest based on arelatively small
fractions of the original sample, and nonlinear statistics such as ratios may be far less stable for
the random groups than for the whole sample. The next section considers another method, which
yields replicate samples that resemble the overall sample much more closely.

Other requests made in the DISPLAY step in Exhibit 2.2 were not repeated in Exhibit 2.3, but
could have been. In other words, it is possible to use the TRANSFORM step to increase the
information on the VPLX file without losing any results from the CREATE step. Alternatively,
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itisalso possibleto direct VPLX to retain selectively information from the CREATE step on the
output file.

User-Supplied Subroutinesin the TRANSFORM Step. Exhibit 2.3 employs only standard
subroutinesin the TRANSFORM step, which isillustrative of amost al practice. In some cases,
however, the standard subroutines are not adequate for an application. User-supplied FORTRAN
subroutines may be linked directly with VPLX in such circumstances. An alternative approach,
inexanB. ¢ r d, employs a user-supplied subroutine, USER?2, as an example. In general, up to
10 user-supplied FORTRAN subroutines, with names USER1 - USER10, may be linked with
VPLX and called from the TRANSFORM step. Furthermore, because USER2 provides a more
concise display from the TRANSFORM step than RPRINT, the balance of the chapter will
employ it. The output of the TRANSFORM step in thiscaseis:

transform in = exanpl el.vpl out=exanpl la. vpl

conment The next statenent, user2, requests that VPLX call a FORTRAN
subroutine USER2, which can be provided by the user to
mani pul ate the totals.
Note that VPLX will call the routine once for the total and once
for each replicate, and that USER2, for didactic purposes,
di spl ays the three val ues

user 2

old roons persons

derived proom

(assigned to bl ock 2)

comment Optionally, |abels can be provided and added to the VPLX file.

| abel s rooms ' Nunber of roons' persons ' Persons'
proom ' Roons per person'

REPLI CATE 0, V1= 36.00, V2= 24.00 RATIO= 1.5000
REPLI CATE 1, V1= 30.00, V2= 42.00 RATIO= .7143
REPLI CATE 2, V1= 36.00, V2= 48.00 RATIO= .7500
REPLI CATE 3, V1= 30.00, V2= 12.00 RATIO= 2.5000
REPLI CATE 4, V1=  24.00, V2= 6. 00 RATI C= 4.0000
REPLI CATE 5, V1=  48.00, V2= 24.00 RATIO= 2.0000
REPLI CATE 6, V1=  48.00, V2= 12.00 RATIO= 4.0000

Exhibit 2.4. Alternative TRANSFORM step based on USER2.

The comment after the TRANSFORM statement explains that VPLX will call a FORTRAN
subroutine named USER?2 to obtain values of theratio. The FORTRAN code for USER2 in this
exampleis:
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SUBROUTI NE USER2( DI D, NI D, | VLI ST, Di MPNT, DI MX, DXPNT, #1
DX, MBI ZE, MTYPE, MTRAN, STRI NG, | X)
I NTEGER NI D, | VLI ST(6), DI MPNT(*), DI MX(*), DXPNT(*) , MBI ZE(*),
. MTYPE(*), MTRAN(*), | X(*)
DOUBLE PRECI SI ON Di D(NI D), DX(*)
CHARACTER* 128 STRI NG *)
100 FORMAT(' REPLICATE ,13,', VI1=',F8.2,', V2=',F8.2,' RATIO=', F8.4) #2
| F(DX(DXPNT(2)).GT. 0.) THEN
DX( DXPNT( 3) ) =DX( DXPNT( 1) ) / DX( DXPNT( 2) ) #3
ELSE
DX( DXPNT( 3) ) =0.
END | F
K=Dl D( 1) +. 0500
VR TE( 6, 100) K, DX( DXPNT( 1) ), DX( DXPNT( 2) ) , DX( DXPNT( 3)) #4
RETURN
END

Exhibit 2.5. Example FORTRAN subroutine USER2 in the TRANSFORM step.

The argument list to USER?2, at #1 in Exhibit 2.4, provides information to the subroutine, most
of which is not referenced in this example. A few observations, even to the reader unfamiliar
with FORTRAN syntax, are instructive. Chapter 15 describes how such subroutines may be
written and used. The FCRVAT statement at #2 is used, in connection with the WR T E statement
at #4, to write the replicate number and values of the variables directly to the listing. More
typically, the user-supplied routines will have only computational objectives, but, writing values
to thelisting file and all of the other operations available in FORTRAN are permitted, with the
exception of altering the filesthat VPL X has open or the contents of VPL X's common blocks.

The statement at #3 in Exhibit 2.4 computes the ratio. Note that the array DXPNT points to
locations in DX for values of the variables. In general, it is possible to create new statistics based
on arbitrarily complex functions of the estimated totals as long as they can be implemented in
user-supplied subroutines.

2.3 The Simple Jackknife

General Description. The simple jackknife can be applied in essentially the same sampling
situations as the random group method. Whereas the random group method uses a small fraction
of the sample to compute all the statistics of interest, the jackknife leaves one of the fractions out
of the estimate of total, in succession. In other words, instead of replicate estimates based on only
one group, the jackknife creates replicate estimates based on all but one group.
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In general, a data file suitable for VPLX to implement the random group method is equally
suitable for the jackknife - VPLX itself forms the jackknife replicates leaving out one group at
atime.

Grouping Clusters. Therulesfor the random group method about grouping clusters, in Section
2.2, may be applied to the jackknife as well. The incentives for grouping are substantially less
with the jackknife, however. Since the jackknife uses almost all of the sample to compute the
statistics of interest, the concerns for the stability of nonlinear statistics for the random group
method greatly diminish for the jackknife.

Stratification. Aswith the random group, the simple jackknife may sometimes be adapted to
problems involving stratification. In most instances, however, it is more advantageous to switch
to the stratified jackknife, in Section 2.5, for any such problems.

How Many Replicates? Many users may be surprised at how fast VPL X implements ajackknife
calculation - almost as quickly as a random group method. In most instances, it is simply more
convenient for VPLX to work with up to hundreds of replicate samples on a PC or thousands on
workstations or higher level computers before considering grouping clusters for increased
efficiency. Thus, in many instances, the appropriate number of replicates is the number of
clustersin the design.

On occasion, however, there are reasons to reduce the number of replicates by appropriate
grouping. TheVPLX file generated by the CREATE step or subsequent TRANSFORM step may
be too large for available storage space if the jackknife employs all available clusters. Secondly,
avery large number of replicates - in the thousands on a PC, for example - may represent too
great a demand on resources.

Thereis not an absolute rule on the minimum number of replicates, although variance estimates
based on 20 replicates are generally only moderately precise, and using a larger number, such as
100, if possible, is amost always worth the effort in increased precision for the variance
estimates.

Example. Reanalyzing the previous example with the jackknife is instructive:
comrent EXAM4

comrent The next cal cul ation uses the sane data but substitutes
the sinple jackknife method. Note that by specifying
a cluster code anong the input variables and no stratum
code, the sinple jackknife is selected by default.

create in = exanplel.dat out = exanplel.vpl #1



2.16
i nput roons persons cluster
3 variables are specified

f or mat (3f2.0)
(Sinple) jackknife replication assumed
Si ze of bl ock 1 = 3
Total size of tally matrix = 3
Unnamed scratch file opened on unit 13
Unnamed scratch file opened on unit 14

End of primary input file after obs # 6

transform in = exanpl el. vpl out=exanpl la.vp

user 2

cooment Notice that the sinple jackknife forns replicates by
| eaving out one cluster at a tine. The val ues worked
with by USER2 are quite different fromthe random group
net hod.

old roons persons

derived proom

(assigned to bl ock 2)

| abel s rooms ' Nunber of roons' persons ' Persons'
proom ' Roons per person'

REPLI CATE 0, V1= 36.00, V2= 24.00 RATIO= 1.5000
REPLI CATE 1, V1= 37.20, V2= 20.40 RATIO= 1.8235
REPLI CATE 2, V1= 36.00, V2= 19.20 RATIO= 1.8750
REPLI CATE 3, V1= 37.20, V2= 26.40 RATIO= 1.4091
REPLI CATE 4, V1=  38.40, V2= 27.60 RATIO= 1.3913
REPLI CATE 5, V1= 33.60, V2= 24.00 RATIO= 1.4000
REPLI CATE 6, V1= 33.60, V2= 26.40 RATIO= 1.2727
di splay in = exanpl la. vpl

list roons persons total (rooms persons) proom

comment Note that the covariances for the totals are the sane
as the random group net hod.

cov total (roons persons)
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Estimate Standard error
Nunber of rooms : MEAN 6. 0000 . 6831
Per sons : MEAN 4. 0000 1.1832
Nunber of rooms . TOTAL 36. 0000 4. 0988
Per sons . TOTAL 24. 0000 7.0993
Roons per person © VALUE 1. 5000 . 5220

Covariances of the Sanple Estinates

Estimate 1 2
Nunber of roons . TOTAL
1 36. 0000 . 16800000D+02
Per sons . TOTAL
2 24. 0000 . 12000000D+01 . 50400000D+02

Exhibit 2.6. Annotated output from the simple jackknife example.

At #1, acomparison to Exhibit 2.2 shows that the syntax for the simple jackknife in the CREATE
step is similar to the random group method, but even simpler. Use of cl ust er asavariable
name carries the reserved meaning that the variable is to be used to form clusters for the
jackknife. With this much information, and without an explicit identification of the replication
method through aREPLICATION METHOD statement, VPLX will carry out asimple jackknife.

The statements for the TRANSFORM step are the same as for the random group example, but
the output of USER2, appearing at #2, is quite different. The first set of values corresponds to
the values for the overall sample, as before. Thefirst replicate is computed by omitting the value
for the first cluster and reweighting the remaining results by 6/5, that is, 37.2 = 6/5 (36-5). The
current range of values for the ratio, 1.2727 to 1.8750, is much narrower than for the random
group method.

VPLX implements the following formula for the simple jackknife:

Var,(X,) = (1) Y @ - xy, (2.2)

n r=1

where n isthe number of clusters. Thisformulaissimilar to (2.1), but the coefficient (n-1)/nin
(2.2) is (n-1)? times larger than the analogous coefficient in (2.1), reflecting the much narrower
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range of variation in replicate estimates for the jackknife than the random group. Variances and
covariancesfor meansand totals of r oons and per sons areidentical with random group results
in thisexample. In general, the jackknife and random group procedures agree for linear statistics
when computed from the same set of clusters.

Generally, the random group and jackknife disagree for nonlinear statistics. The jackknife
estimates the variance for pr oom as 5/6 {(1.8235-1.5)? + (1.8750-1.5)? + (1.4091-1.5)? +(1.3913-
1.5)%+ (1.4-1.5)% + (1.2727-1.5)% = 0.5220%. The jackknife variance estimate is relatively close
instead to the linearized version of 0.4688%. In general, the jackknife tends to be close to the
linearized variance estimate if both calculations employ the same clusters and the statistic of
interest is smooth.

Applications of the jackknife are safest for smooth statistics, for example, statistics with
continuous first and second derivatives in a neighborhood of the population value. (It is not
necessary that the user be able to compute these derivatives, simply that the derivatives exist
theoretically.) Means, totals, proportions, and a variety of ratio, regression, and analytic statistics
fit this description. Sample medians and other percentiles (except when computed through
extrapolation of grouped data) do not. Statistics whose form changes abruptly based on
characteristics of the sample data, such as ratio adjustments that collapse based on rules applied
to ratios observed in the sample data, or model selection rules in linear regression, also pose
problems for the jackknife. (Typically, these situations are problematic for linearization as well,
although there are specific approaches available for percentiles and some other statistics.) To
some degree, these problems can be overcome by grouping, but the user should consult the
developing research in applications of the jackknife to such statistics with jumps or other
discontinuities.

2.4 The Stratified Jackknife

General Description. Many complex samples employ stratification in the sample design, that
is, they divide the universe into distinct subpopulations and sample each subpopul ation separately
and generally independently. Both the random group method and the simple jackknife adapt with
difficulty to stratification, except under special circumstances. When two or more clusters have
been sampled from each of two or more strata, VPL X is able to implement a stratified jackknife,
which is more suitable for such problems.

The simple jackknife of the previous section omitted a cluster and reweighted the remaining n-1
clusters. In the stratified jackknife, a cluster in stratum s is omitted, and the remaining ns-1
clusters within stratum s are reweighted. Thus, the stratified jackknife assumes that a given
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cluster represents the stratum from which it was selected, not the population as awhole. Aslong
asn>1 for each stratum s, the stratified jackknife does not impose further restrictions on the n..

Grouping Clusters. If necessary, clusters may be grouped in two ways:. 1) clusters within a
stratum may be grouped following the suggestions given in Sections 2.2 and 2.3 for the random
group and simple jackknife methods; 2) in some situations, it is possible to group clusters across
strata. Asan example of the second situation, suppose a design includes k strata with 2 sampled
clusters each. Suppose further that these strata contribute an extremely small proportion of the
overal estimate and variance. Then by randomly selecting one cluster from each of the stratato
form one super-cluster and assigning the remaining clusters to the second, one may include the
resulting two super-clusters and super-stratum in the analysis in place of the original.

How Many Replicates? VPLX implements the stratified jackknife aimost as quickly as the
simple jackknife. Consequently, relatively large numbers of clusters and strata may be
considered.

Pronouncements about how few replicates are adequate become more complex for the stratified
jackknife for two reasons. First, an algebraic degree of freedom islost for each stratum, so that
a stratified jackknife based on 50 clusters, 2 clusters from each of 25 strata, behaves more like
asimple jackknife using 26 clusters rather than a simple jackknife using 50, with respect to the
relative reliability of the variance estimate. Secondly, the stratified jackknife becomes even less
precise if most of the true variance for a given statistic is due to sampling from only one of the
strata, if only afew clusters from the stratum are present for purposes of variance estimation.
Consequently, it is advisable to consider providing VPL X with all of the available clustersin the
design before grouping clusters, if at al possible.

Example. Suppose that the datafrom the previous example had not been drawn by sampling with
replacement from the overall population but instead was the result of sampling from a population
after stratification into 3 strata, from each of which two occupied households had been selected.
For example, the first two sample units may have been sampled from a stratum of housing units
in multi-unit buildings in areas with high poverty rates, the second two from a stratum of housing
units in multi-unit buildings in other areas, and the last two from a stratum of single-unit
dwellings. The random group method or the jackknife could be applied to this problem by
creating two replicates based on assigning one of each pair of sample units within each stratum
to thefirst replicate and the remaining three to the second. (In thisinstance, where there are only
two replicate samples, the random group and jackknife replication are equivalent.) A better
approach is based on the stratified jackknife:

coment EXANVD

comment The next exanple illustrates the stratified jackknife
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The six observations are grouped into three strata of
two observations each

create in = exanple5.dat out = exanpl e5.vp

i nput roons persons cluster stratum/ option nprint = 6
4 variables are specified

f or mat (4f2.0)

comment EXAMPLES. DAT contai ns the fol |l owi ng dat a:

5711
6821
5232
4142
8453
8263
Stratified jackknife replication assumed
Si ze of bl ock 1 = 3
Total size of tally matrix = 3
Unnamed scratch file opened on unit 13
Unnamed scratch file opened on unit 14
Unnamed scratch file opened on unit 15
Cbservation 1 fromunit 12
roons 5. 0000 per sons 7.0000
cluster 1. 0000 stratum 1. 0000
Cbservation 2 fromunit 12
roons 6. 0000 per sons 8. 0000
cluster 2. 0000 stratum 1. 0000
Cbservation 3 fromunit 12
roons 5. 0000 per sons 2. 0000
cluster 3. 0000 stratum 2.0000
Cbservation 4 fromunit 12
roons 4. 0000 per sons 1. 0000
cluster 4. 0000 stratum 2.0000
Cbservation 5 fromunit 12
roons 8. 0000 per sons 4. 0000
cluster 5. 0000 stratum 3. 0000
Cbservation 6 fromunit 12
roons 8. 0000 per sons 2. 0000
cluster 6. 0000 stratum 3. 0000

(Printing discontinued on unit 12)

End of primary input file after obs # 6



3 strata observed on incoming file

transform

user 2

old roons persons

in

= exanpl e5. vpl out =exanpl 5a. vpl

derived proom

(assigned to bl ock

2)

| abel s rooms ' Nunber of roons' persons ' Persons'

proom ' Roons per person'

REPLI CATE 0, V1= 36.00, V2= 24.00 RATIO= 1.5000
REPLI CATE 1, V1= 37.00, V2= 25.00 RATIO= 1.4800
REPLI CATE 2, V1= 35.00, V2= 23.00 RATIO= 1.5217
REPLI CATE 3, V1= 35.00, V2= 23.00 RATIO= 1.5217
REPLI CATE 4, V1= 37.00, V2= 25.00 RATIO= 1.4800
REPLI CATE 5, V1= 36.00, V2= 22.00 RATIO= 1.6364
REPLI CATE 6, V1= 36.00, V2= 26.00 RATIO= 1.3846
di splay in = exanpl 5a. vpl

list roons persons total (roonms persons) proom

cooment Note that linearization gives the variance of proom at

.1284 * .1284

cov total (roons persons)

Estimate Standard error
Nunber of rooms MEAN 6. 0000 . 2357
Per sons MEAN 4. 0000 . 4082
Nunber of roomns TOTAL 36. 0000 1. 4142
Per sons TOTAL 24. 0000 2. 4495
Roons per person VALUE 1. 5000 . 1297

Nunber of roons

1

Per sons
2

Covariances of the Sanple Estinates
Estimate 1 2
TOTAL
36.0000 .20000000D+01

TOTAL
24.0000 .20000000D+01 .60000000D+01

Exhibit 2.7. Annotated output from the stratified jackknife example.

#5

#6

221
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The INPUT statement at #1 now listsfour variables. Thelast of theseisst r at um, which VPLX
will interpret as a stratum code in the absence of other information. This example also illustrates
ageneral feature available in Version 93.05: an option to specify a number of observationsto list
in order to check whether the values are being correctly read from the incoming file.

The FORMAT statement reflects a modification to represent the four variables. The comment
at #2 shows the input data set. Sample records in the same stratum receive the same stratum
code. The cluster code has not been revised from EXAMPLE1.DAT. Although the example
seems to suggest that it is necessary to number cluster codes continuously from 1, VPLX only
uses the cluster code within the stratum as an identifier. Consequently, the cluster codes could
instead have been 1, 2, 1, 2, 1, 2, or many other possible combinations, with the same effect.

The information reported by VPLX at #3 also differs from the previous example. At #4, itis
evident that VPL X uses one more scratch file for this method than the simple jackknife. The
purpose of the additional fileisto hold temporary totals for the separate strata.

The optional display of incoming data occurs next. Usually, such alisting for even afew of the
first records on the file should help to identify any mismatch between the INPUT list and the
FORMAT.

The values of each replicate reported at #5 illustrate the manner in which the stratified jackknife
formsreplicates. The value for the replicate number of rooms, 37.0, arises by omitting the first
value, 5, from the total, 36, and reweighting the remaining observation within the stratum, 6, by
the factor 2. The stratified jackknife reweights observations within the same stratum to
compensate for omitting a cluster, rather than reweighting all of the remaining observations as
the simple jackknife does. If an observation came from a stratum of three clusters, the stratified
jackknife would reweight the remaining two by 1.5, etc.

The note at #6 reports the result of a calculation similar to that just after #5 in Exhibit 2.3, but
using the estimated variances and covariance for the stratified sample, given as the last part of
Exhibit 2.7. That is, .1284% = 2./24% + 6.*36°/24" - 2*2.*36/24°. The estimated standard error
from the stratified jackknife, .1297, is quite close to the linearization result. Note that both
results, which consider the sample to be stratified, are dramatically different from the previous
examples.

The variance estimator in VPLX for the stratified jackknifeis:

-1 g
) DINCARE A (23)

s

Varsjk X, =

S
=1

s
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where s indexes the strata, Sis the total number of strata, i represents an index of the cluster
within the stratum, and n, represents the number of clustersin stratum s. Double indexing is
shown here for clarity, but VPLX in fact internally considers the replicates to be subscripted by
asingle index.

2.5 Half-Sample Replication

General Description. Half-sample replication, which under some conditions is aso called
balanced repeated replication, uses replicates formed from half of the sample. For example, if
a sample design consists of a number of strata from which two clusters have been selected
(technically, selected independently and with replacement), then a half-sample replicate can be
formed by selecting one sample cluster from each of the strata. V ariance estimation through half-
sample replication is more efficient if the assignment to half samples is done by the user in an
orthogona manner, such as may be achieved through application of a Hadamard matrix; further
technical details may be found in Wolter (1985). VPLX will generate Hadamard matrices for
many of the standard sizes; further details are in Chapter 12.

Grouping Clusters. Half-sample replication is defined in terms of 2 selections per stratum, so
that grouping or some other arrangement isrequired in other situations. If four clusters have been
sampled from a stratum, choices include combining pairs of clusters into 2 superclusters, or
dividing the stratum into 2 pseudo-strata of 2 clusters each. These strategies extend readily in
instances with an even number of clusters per stratum. Stratawith 3 clusters, which the stratified
jackknife deals with happily, require painful compromise with half-sample replication.

How M any Replicates? Half-sample replication typically requires more calculation per replicate
than the jackknife. Hence, except for situations in which highly precise variance estimates are
required, the range of 25 to 200 represents a starting point for consideration, with the lower end
representing relatively imprecise estimates.

Example. Under the same stratification as in the example for the stratified jackknife, the
following VPLX run employs an input file in which the total sample and each half sample are
represented by separate records on the incoming file:

comrent EXAMB

comment This next exanpl e uses hal f-sanpl e replication
but uses the same stratification as exanpl e EXAVb

create in = exanple6.dat out = exanpl e6.vp

i nput roons persons cluster #1
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3 variables are specified
replicate nunber cluster
replicate count 5
f or mat (3f2.0)

replication method half-sanple

comment EXAMPLEG. DAT cont ai ns:

570
680
520
410
840
820
571
521
841
572
412
822
6 83
523
823
6 8 4
414
844
Si ze of bl ock 1 = 3
Total size of tally matrix = 3

End of primary input file after obs #

transform in = exanpl e6. vpl out=exanpl 6a. vpl
user 2

old roons persons

derived proom

(assigned to bl ock 2)

18

| abel s rooms ' Nunber of roons' persons 'Persons'

proom ' Roons per person'

REPLI CATE 0O, V1= 36.00, V2= 24.00 RATIC=
REPLI CATE 1, V1= 36.00, V2= 26.00 RATIC=
REPLI CATE 2, V1=  34.00, V2= 20.00 RATIC=
REPLI CATE 3, V1= 38.00, V2= 24.00 RATIC=
REPLI CATE 4, V1= 36.00, V2= 26.00 RATIC=

di splay in = exanpl 6a. vpl

1. 5000
1.3846
1. 7000
1.5833
1.3846

#2

#3

#4
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Unnamed scratch file opened on unit 13

list roons persons total (rooms persons) proom
cov total (roons persons)

Estimate Standard error
Nurber of roons : MEAN 6. 0000 . 2357
Per sons :  MEAN 4. 0000 . 4082
Nurber of roons : TOTAL 36. 0000 1. 4142
Per sons : TOTAL 24. 0000 2. 4495
Roons per person © VALUE 1. 5000 . 1356

Covari ances of the Sanple Estimates

Estimate 1 2
Nunber of roons . TOTAL
1 36. 0000 . 20000000D+01
Per sons . TOTAL
2 24,0000 . 20000000D+01 . 60000000D+01

Exhibit 2.8. Annotated output from the first half-sample example.

Starting with the INPUT statement at #1, the specification of the problem is modestly different
from previous examples. Two statements, REPLICATE NUMBER, which indicates that the
variable cl ust er isnot intended for a stratified jackknife but used instead to identify replicates
on the file; and REPLICATE COUNT, which gives the total number of replicates, including the
original sample; make their first appearance here. A REPLICATION METHOD statement at #2
isalso included in order to direct VPLX to use the usual form of half-sample replication, that is,
in which each replicate represents approximately one half of the overall total.

The comment at #3 liststhe input data. Six records represent the overall sample, with cl ust er
set to 0. Each of four half samplesis composed of three observations. Orthogonality is achieved
since each cluster is in exactly one half of the half samples (in this case, 2) and each pair of
clustersin different strata are in exactly one quarter of the half samples (in this case, 1). (These
two conditions are sufficient, but not necessary, to assure orthogonality.)
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The estimates of totals shown at #4 were formed by multiplying the half sample estimates by 2;
for example, 36.0 = 2* (5+5+8), for the first half-sample value for rooms. The variance estimator
used by VPLX is:

n

ar, (X) = ) (X, - X (2.4)

i=1

where n denotes the total number of half-sample replicates. Note that the estimated standard error
for pr oom, .1356, is somewhat different from the results of linearization, .1284, and the stratified
jackknife, .1297. All other estimated standard errors and covariances are identical.

Half-sample replication appears to enjoy some advantages over both the jackknife and
linearization with respect to some nonsmooth statistics, such as percentiles.

Statistically Equivalent Representations. Theinput, EXAMPLEG. DAT , had shorter recordsthan
EXAMPLES. DA T but also considerably more records, 18 instead of 6. Other methods of
expressing the data may be substantially more efficient on occasion. For example:

coment  EXAW
comment This next exanpl e uses hal f-sanple replication,
but uses the sane stratification as exanpl e EXAM}
create in = exanple7.dat out = exanpl e7.vpl
i nput roons persons weight repwl - repw4 #1
7 variables are specified
f or mat (2f2.0,4x,f2.0,4f2.0)

replication nmethod reweighted hal f-sanple

comrent EXAMPLE?. DAT cont ai ns: #2
571112200
682110022
523212020
414210202
845312002
826310220

Note how the hal f-sanples are indicated by the replicate
wei ghts, for exanple, the first half-sanple is formed by
wei ghting observations 1, 3, and 5, by 2.

Si ze of block 1 = 3



Tot al

size of tally matrix =

3

End of primary input file after obs # 6
transform in = exanpl e7.vpl out=exanpl 7a. vpl
user 2
old roons persons
derived proom

(assigned to bl ock 2)
| abel s rooms ' Nunber of roons' persons ' Persons'

proom ' Roons per person'

REPLI CATE 0, V1= 36.00, V2= 24.00 RATIO= 1.5000
REPLI CATE 1, V1= 36.00, V2= 26.00 RATIO= 1.3846
REPLI CATE 2, V1=  34.00, V2= 20.00 RATIO= 1.7000
REPLI CATE 3, V1= 38.00, V2= 24.00 RATIO= 1.5833
REPLI CATE 4, V1= 36.00, V2= 26.00 RATIO= 1.3846
display in = exanpl 7a. vpl

Unnamed scratch file opened on unit 13

list

cov

t ot al

roons persons total

(roons persons)

Nunber of roons

Per sons

Nunber of roons

Per sons

Roons per person

Nunber of roons

1

Per sons
2

Exhibit 2.9. Annotated output from a second example of half sample replication, using a

TOTAL

TOTAL

VALUE

(roons persons) proom

Estinate

6. 0000

4. 0000

36. 0000

24.0000

1. 5000

Covari ances of the Sanple Estinates

Estimate

TOTAL
36. 0000

TOTAL
24. 0000

different form of input.

. 20000000D+01

. 20000000D+01

Standard error

. 2357

. 4082

1. 4142

2. 4495

. 1356

. 60000000D+01

#3

2.27
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The INPUT statement at #1 includes variables with reserved meanings: wei ght and r epwi.-
repwd, thatis, repwl, repw2, repw3, andrepw4. Thevaluesof wei ght areall 1; thisis
the weight used to form estimates for the overall sample. Each half-sample replicate is derived
by weighting the data by repwl, repw2, repw3, or repw4, respectively. Note that the
observations included in half-sample 1 in EXAMPLEG. DAT each receive a weight of 2 in
EXAMPLEY. DAT , and similarly for the rest of the replicates. The REPLICATION METHOD
statement specifies the reweighted half-sample method, which is reweighted in the sense that
repwl , etc., already incorporate the factor of 2 used in the first half-sample example. There are
no differences in estimates between Exhibits 2.8 and 2.9; the only issue in the comparison is the
different possible expressions of the replication method in the construction of the data set.

2.6 Generalized Replication
VPLX permits the calculation of the variance estimator:

Varg(Xg) = Zn: br(Xr B XO)Z’ (25)

where n represents the total number of replicates and b, r=1,..., n, are a set of coefficients
supplied by the user. Similarly, the construction of the X, must also be specified through a means
such as repwl,.... For illustration, the previous example may be run as a special case of
generalized replication:

comment EXAVB
cooment This exanple is statistically identical to
EXAM7, but illustrates the coefficient feature
of VPLX giving the user flexibility in determning
the replication calculation for generalized replication
create in = exanple7.dat out = exanpl e7.vp
i nput roons persons wei ght repwl - repw4

7 variables are specified

f or mat (2f 2.0, 4x,5f2.0)

coefficients 4 * .25 #1
General i zed replication assuned #2
Si ze of bl ock 1 = 3

Total size of tally matrix = 3
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End of primary input file after obs # 6
transform in = exanpl e7.vpl out=exanpl 7a. vp
user 2
old roons persons
derived proom
(assigned to bl ock 2)

| abel s rooms ' Nunber of roons' persons ' Persons'
proom ' Roons per person'

REPLI CATE 0, V1= 36.00, V2= 24.00 RATIO= 1.5000 #3
REPLI CATE 1, V1= 36.00, V2= 26.00 RATIO= 1.3846
REPLI CATE 2, V1= 34.00, V2= 20.00 RATIO= 1.7000
REPLI CATE 3, V1= 38.00, V2= 24.00 RATIO= 1.5833
REPLI CATE 4, V1= 36.00, V2= 26.00 RATIO= 1.3846
display in = exanpl 7a.vp
Unnamed scratch file opened on unit 13

list roons persons total ( roons persons) proom

Estinate Standard error
Nunber of roons : MEAN 6. 0000 . 2357
Per sons : MEAN 4. 0000 . 4082
Nunber of roons : TOTAL 36. 0000 1.4142
Per sons :  TOTAL 24. 0000 2. 4495
Roons per person © VALUE 1. 5000 . 1356

Exhibit 2.10. Annotated output showing half-sample replication implemented as a special
case of generalized replication.

A COEFFICIENTS statement at #1 provides the values of b,, which are in fact the values used
by VPLX for half-sample replication. By providing this statement and replicate weights r epwl
-repw4, VPLX implements the generalized replication option, acknowledged at #2. The
replicate values, at #3, are the same as in Exhibits 2.8 and 2.9.

Modified Half-Sample Replication. Asasecond example, it is possible to replace the weights
of 0 and 2 used in half sample replication with modified weights of 0.5 and 1.5. For estimates
of total, the new replicate represents a simple average of the half-sample replicate with the result
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for the overall sample. Because each replicate consequently differs from the overall sample by
half the distance of half-sample replication, the appropriate coefficients are 4 times those for the
equivalent half-sample problem.

comment  EXAWD

comment This exanple is simlar to EXAMB, although now the
replicate weights have been changed from2 and 0
to 1.5 and .5. Note the correspondi ng change in
the coefficients statenent

create in = exanple9.dat out = exanpl e9.vp

i nput r oons persons wei ght repwl - repw4

7 variables are specified

f or mat (2f2.0,4x,f2.0,4f4.0)

coefficients 4 * 1.0 #1
comrent The contents of EXAMPLE9. DAT: #2
571111.51.50.50.5
6821105051.51.5
523211.50.51.50.5
4142105150515
845311.50.50.51.5
82631051.51.50.5

Note: conpare to EXAMPLE7. DAT in EXAW

General i zed replication assuned

Si ze of bl ock 1 = 3
Total size of tally matrix = 3
End of primary input file after obs # 6

transform in = exanpl e9.vpl out=exanpl 9a.vp
user 2
old roons persons
derived proom

(assigned to bl ock 2)
| abel s rooms ' Nunber of roons' persons ' Persons'

proom ' Roons per person

REPLI CATE 0, V1= 36.00, V2= 24.00 RATIO= 1.5000 #3

REPLI CATE 1, V1= 36.00, V2= 25.00 RATIO= 1.4400
REPLI CATE 2, V1= 35.00, V2= 22.00 RATIO= 1.5909



REPLI CATE 3, V1= 37.00, V2= 24.00 RATIO= 1.5417
REPLI CATE 4, V1= 36.00, V2= 25.00 RATIO= 1.4400

di splay in = exanpl 9a. vpl

Unnamed scratch file opened on unit 13

list roons persons total (rooms persons) proom
cov total (roons persons)

Estimate
Nurber of roons : MEAN 6. 0000
Per sons :  MEAN 4. 0000
Nurber of roons : TOTAL 36. 0000
Per sons : TOTAL 24. 0000
Roons per person © VALUE 1. 5000

Covari ances of the Sanpl e Estimates

Nunber of roons . TOTAL
1

Per sons . TOTAL

Estimate

36. 0000

24. 0000

. 20000000D+01

. 20000000D+01

St andard error

. 2357

. 4082

1.4142

2. 4495

. 1312

. 60000000D+01

Exhibit 2.11. Annotated output from second generalized replication example.
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The COEFFICIENTS statement at #1 reflects the appropriate values to use with the revised
replicates. The data set described at #2 can be compared to #2 in Exhibit 2.9; in each case
replicate weights of 0 have become 0.5, and those of 2 have become 1.5. This modification
produces replicates more similar to the original values than for half-sample replication, as can be
seen by comparing values at #3 of Exhibit 2.10 with #3 here. The estimated standard error for
proom, .1312, is closer to the results for linearization, .1284, and the stratified jackknife, .1297,
than the half-sample result, .1356. In general, modified half-sample replication represents aform
of compromise between the jackknife and the usual half-sample replication, combining properties

of both.
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EXAMB8 uses generalized replication to obtain the same numerical resultsas EXAM7; in fact, the
results of any of the previous examples may also be obtained by construction of appropriate data
sets and specification of the generalized replication option. Generalized replication plays a
special role in reweighting, in Chapter 9.

2.7 A Brief Tour of aVPLX File

The previous sections illustrated ways in which VPLX files could be produced in a CREATE
step, altered in a TRANSFORM step, or provided to DISPLAY in order to estimate variances,
without, however, showing what any of the VPLX files contained. In fact, VPLX files are
FORTRAN unformatted files and are not easily displayed directly. VPLX creates and reads these
files with the same FORTRAN statements in every computer environment, but FORTRAN
implementation of unformatted files may vary. Generally, unformatted files cannot be directly
copied across different computer systems. An EXPORT and IMPORT feature of VPLX provides
atrandation into and back out of a character representation for movement across systems, should
the need arise. (EXPORT and IMPORT use a FORTRAN D24.16 format to preserve essentially
all of the numerical precision of the original file, so the character representation of aVPLX file
is about 3 times the size of the original unformatted version.)

EXPORT also has a didactic function, to present a simple listing of the contents of aVPLX file
to illustrate the information provided on such files. (The listing shows estimates with reduced
precision for ease of reading.) This section will display such a listing for a VPLX file in a
previous example. This section is optional reading and is intended as an aid to the curious.

Example 5, shown in Exhibit 2.7, has been modified by replacing the DISPLAY step with an
EXPORT step. Because no OUT= fileis given, the step produces only the printed summary.

comrent EXAVBA

conmment The next exanple illustrates the stratified jackknife
The six observations are grouped into three strata of
two observations each.

create in = exanple5.dat out = exanpl e5. vpl

i nput roons persons cluster stratum

4 variables are specified

f or mat (4f2.0)

comment EXAMPLES. DAT contai ns the foll owi ng dat a:

5711

6821
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Stratified jackknife replication assuned
Si ze of bl ock 1 = 3
Total size of tally matrix = 3
Unnamed scratch file opened on unit 13
Unnamed scratch file opened on unit 14

Unnamed scratch file opened on unit 15

End of primary input file after obs # 6
3 strata observed on incomng file
transform in = exanpl 5. vpl out=exanpl 5a. vp
user 2
old roons persons
derived proom
(assigned to block 2)
| abel s rooms ' Nunber of roons' persons ' Persons'
proom ' Roons per person'
REPLI CATE 0, V1= 36.00, V2= 24.00 RATIO= 1.5000
REPLI CATE 1, V1= 37.00, V2= 25.00 RATIO= 1.4800
REPLI CATE 2, V1= 35.00, V2= 23.00 RATIO= 1.5217
REPLI CATE 3, V1= 35.00, V2= 23.00 RATIO= 1.5217
REPLI CATE 4, V1= 37.00, V2= 25.00 RATIO= 1.4800
REPLI CATE 5, V1= 36.00, V2= 22.00 RATIO= 1.6364
REPLI CATE 6, V1=  36.00, V2= 26.00 RATIO= 1.3846
export in = exanpl 5a. vp
| VERSN
9203
NVTOT  NVREG NCLASS NVARI D NBY NWGT  TYPE

5 3 0 2 0 0 18 4
NCLBAR

0
BLTYPE BLXSTR BLXI NC BLXSI Z BLVSTR BLVSI Z BLNCLS BLCPNT

1 1 3 3 1 2 0 1

0 4 1 1 3 1 0 1

Vari abl e types
1 1 11 1 1

5

4

VRCPTN NI DTOT TSI ZE NCLBLK

2

2.33
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Vari abl e sizes

1 1 1 1
Vari abl e | ocations

2 3 4
Crossed di nensi ons

0
Vari abl e nanes and | abel s
roons Nunber of roons
per sons Per sons
proom Roons per person
stratum stratum
cluster cluster

Level |abels

0

Vari abl e nanes in crossings
0

Nunber of replicates
6

Coefficients

.500 .500 .500 .500

-9878. 0000 -9878. 0000
6. 0000 36. 0000
1. 0000 1. 0000
6. 0000 37.0000
1. 0000 2. 0000
6. 0000 35. 0000
2. 0000 3. 0000
6. 0000 35. 0000
2. 0000 4. 0000
6. 0000 37.0000
3. 0000 5. 0000
6. 0000 36. 0000
3. 0000 6. 0000
6. 0000 36. 0000

. 500

24.

1

25

1

23

1

23

1

25

1

22

1

26

. 500

. 0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

. 0000

. 5000

. 0000

. 4800

. 0000

. 5217

. 0000

. 5217

. 0000

. 4800

. 0000

. 6364

. 0000

. 3846

Exhibit 2.12. EXAMB5A, including a listing from EXPORT.

. 0000

. 0000

. 0000

. 0000

. 0000

. 0000

. 0000

#2

#3

#4
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Each VPLX file contains an initial record with a date indicating the last change to the design of
the VPLX file, whichisreported at #1. In this case, the last such change was March, 1992. The
date of the file design usually differs from the program version indicated at the beginning of the
output listing (as in Exhibit 2.2, although this first line was omitted from all other exhibits); in
general, new features are often added to VPLX without any change to the design of the VPLX
file.

The next record, with the associated FORTRAN variable names internal to the program, informs
usthat there are 5 variables overdl: 3 are "regular,” none are class, and 2 are variance identifiers.
Thereareno "BY" groups (Chapter 7), and no weight. TY PE contains a code, 18, indicating how
the replicates are to be defined, VROPTN 5 signals the stratified jackknife. Each replicate
identification record contains 5 (NIDTOT) values. The total size of the matrix is4 (TSIZE) cells
per replicate, in 2 (NCLBLK) blocks with no (NCLBAR) associated block-class records.

The next display summarizes information for each block. The first block includes a cell for the
estimated N (BLTYPE=1). The block startsin cell 1 (BLXSTR) of the overall matrix, with an
increment of 3 (BLXINC) for each level of the class variables (had they been present) for atotal
data size of 3 (BLXSIZ). Similarly, the block begins with the first variable (BLVSTR=1),
includes 2 (BLV SIZ) variables, has no associated classes. Thereis an assigned value of 1to a
pointer in the class block array, used only when classes are associated with the block.
Information for the second block is recorded similarly; for example, no weighted N (BLTY PE=0)
is present for this block.

The next information codes the types of each variable, which arereal except for the single derived
variable. Each variable hastotal size 1. A map to the starting locations of each variable follows
next. There are no crossed dimensions in this example, but they would have appeared here, had
they been present.

Variable names and associated |abels appear next. Since there were no categorical variables, no
level labels appear. Similarly, there are no variablesinvolved in crossings. The VPLX file next
records the number, 6, of replicates for variance estimation and the coefficients to be used in
computing variance and covariance estimates.

The record at #2 reports that the first estimates are for the full sample. The record at #3 contains
these 4 values, beginning with the estimated N. In general, TSIZE estimates for the full sample
appear at thispoint. Therecord at #4 signals the construction of the first replicate, corresponding
to stratum 1, cluster 1. The next three values encode the following instructions for
constructing the replicate sample: observations in other strata are to be multiplied by 1, thosein
this strata but another cluster by 2, and those in this cluster by 0. (In thisway, a VPLX file
records how replicates have been constructed, and this information is used by REWEIGHT.)
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This record is followed by the replicate values for the first replicate. The balance of the file
contains similar information for the other replicates.

Other VPLX files appearing in examplesin this chapter could be similarly displayed. Each would
be similar in overall design but reflect differences according to the number of variables, choice
of replication method, and so forth.

Thelisting from EXPORT provides an indication of how the VPLX fileis arranged, but it is not
as useful adiagnostic tool as other features available in VPLX. The CONTENTS step provides
aclearer summary of variable attributes and other characteristics. A REPPRINT feature in the
TRANFORM step is available to print replicate estimates for any specified set of variables.

2.8 For Further Reading

Cochran (1977) continues as a basic introduction to the theory of finite population sampling,
particularly from the design-based perspective. Kalton (1983) and Lee, Forthofer, and L orimor
(1989) are among several somewhat less technical introductions. There are other perspectives
on the theory of estimation from complex samples, including Sarndal, Swensson, and Wretman
(1992), and Little (1991).

Rao and Bellhouse (1988, 1990) prepared a broad summary of the history of inference from
sample surveys. Papers representing milestones in the development of the theory include Binder
(1983) for generalization of the linearization method to a broad class of estimators, Jones (1974)
for work on the stratified jackknife, Kish and Frankel (1970, 1974) for their comparisons of
variance estimation procedures for complex statistics, and McCarthy (1969) for half-sample
replication.

Wolter (1985) serves as a general overview of design-based variance estimation for complex
samples, with chapters 2, 3, and 4 covering the random group, half-sample, and jackknife
methods, respectively. Efron (1982) presentsageneral perspective on replication methods. Other
references on variance estimation for complex samples include Rust (1985), Krewski and Rao
(1981), Kovar, Rao, and Wu (1988), and Rao and Wu (1988). Rao and Wu (1988) present
important work on the stratified jackknife, providing some balance to the somewhat cautionary
remarks on this procedure found in Wolter (1985) and Sérndal, Swensson, and Wretman (1992).
The modified half-sample replication described in Section 2.6 has been discussed by Fay (1989)
and Judkins (1990).
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Replication methods may have a critical role to play in the analysis of surveys with missing data,
as Rao and Shao (1992), Fay (1991) and others extend and develop alternatives to the ideas of
Rubin (1987), which also incorporated aspects of replication.



